School of Liberal Studies

17BSP502					Solid State Physics					
Teaching Scheme				me	Examination Scheme					
L	т	Р	с	Hrs/Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
4	0	0	4	4	25	50	25			100

COURSE OBJECTIVES

- To understand the chemical bond and nature of solids. ?
- ? To acquire concept of crystalline lattices, crystal structure and its determination techniques.
- I To understand the basic knowledge of phonons, estimates of their dispersive and thermal properties
- ? To understand the origin of the energy bands in solids and basic notions on their calculation
- 2 To understand the Electrical, Optical and Magnetic properties of Solid.

UNIT 1 Crystal Structure and Diffraction

Introduction, Crystalline and amorphous materials – crystal systems – Bravais lattices – Miller Indices – Symmetric elements - symmetric groups - reciprocal lattice - Brillouin zone - point, line, surface and volume defects - colour centers - crystal bindings – ionic bond, covalent bond, molecular bond, hydrogen bond, metallic bond & Van der waals bond.

Diffraction of X-rays: Bragg's Law – experimental methods in X-ray diffraction – Laue method – rotating crystal method – powder photograph method.

UNIT 2 Lattice Vibrations and Thermal Properties

Lattice dynamics: Concept of phonons – momentum of phonons – normal and Umklapp processes – vibrations of one dimensional monatomic and diatomic linear lattices.

Thermal properties: Theories of specific heat – Dulong and Petit's law – Einstein's theory & Debye's theory – Weidemann-Franz law.

UNIT 3 Conductors and Semiconductors

Conductors: Free electron theory – Classical and quantum theory – band theory of solids – density of states – K-space – Bloch functions - Kronig Penny Model.

Semiconductors: Types – carrier statistics in intrinsic and extrinsic semiconductors –electrical conductivity – Hall Effect – electronic specific heat.

UNIT 4 Super conducting, Optical, Dielectrics and Magnetic Materials

Superconductors: Properties – BCS theory – flux quantization – Josephson effects (AC & DC) - high Tc superconductors – applications.

Optical Materials: Optical absorption, colourcentres, Trap, recombination, excitons, Photoconductivity, luminescence Dielectrics: Macroscopic electric field – local electric field – eielectric constant and polarizability – Clausius-Mossotti equation - measurement of dielectric constant.

Magnetic Materils: Types: dia, para, ferro, ferri and antiferrimagnetic materials – hysteresis curve – usceptibility measurement: Guoy balance, Quincke's method - quantum theories of para and ferro magnetism - Curie point and exchange intergral – Curie temperature & Neel temperature (definitions) – magnons – domain theory.

COURSE OUTCOMES

CO1: Students will be able to analyze different types of matter depending on the nature of chemical bonds and their properties. CO2: Students will be able analyze the crystal structures by applying crystallographic parameters and determine crystal structure by XRD data.

CO3: Students will be able to analyze the lattice vibration phenomenon in the solids.

CO4: Students know what phonons are, and be able to perform estimates of their dispersive and thermal properties.

CO5: Students will be able to calculate thermal and electrical properties in the free-electron model.

CO6: Students will be able to evaluate and analyze the electrical optical and magnetic properties of solids

TEXT/REFERENCE BOOKS

- Elements of Solid State Physics, By J.P. SRIVASATAVA, PHI Learning PVT. LTD., 2014. 1.
- Introduction to Solid State Physics, Charles Kittel, John Wiley & Sons, 2019. 2.
- Solid State Physics, S. O. Pillai, Wiley Eastern Ltd., 2006. 3.
- Solid State Physics, A.J. Dekker, Prentice Hall of India 1985. 4.
- 5. Solid-State Physics: Introduction to the Theory, James D. Patterson, Bernard C. Bailey, Springer International Publishing, 2018. END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100

Max. Marks: 100	Exam Duration: 3 Hrs
Part A/Question: 3 Questions from each unit, each carrying 3 marks	36 Marks
Part B/Question: 2 Questions from each unit, each carrying 8 marks	64 Marks

14 Hrs.

12 Hrs.

12 Hrs.

20 Hrs.

Max. <58> Hrs.